
PHENAKI: VARIABLE LENGTH VIDEO GENERATION
FROM OPEN DOMAIN TEXTUAL DESCRIPTIONS

Ruben Villegas‡
Google Brain

rubville@google.com

Mohammad Babaeizadeh‡
Google Brain

mbz@google.com

Pieter-Jan Kindermans‡
Google Brain

pikinder@google.com

Hernan Moraldo
Google Brain

hmoraldo@google.com

Han Zhang
Google Brain

zhanghan@google.com

Mohammad Taghi Saffar
Google Brain

msaffar@google.com

Santiago Castro∗
University of Michigan
sacastro@umich.edu

Julius Kunze∗
University College London
kjulius@google.com

Dumitru Erhan
Google Brain

dumitru@google.com

ABSTRACT

We present Phenaki, a model capable of realistic video synthesis, given a sequence
of textual prompts. Generating videos from text is particularly challenging due to
the computational cost, limited quantities of high quality text-video data and vari-
able length of videos. To address these issues, we introduce a new model for
learning video representation which compresses the video to a small representa-
tion of discrete tokens. This tokenizer uses causal attention in time, which allows
it to work with variable-length videos. To generate video tokens from text we
are using a bidirectional masked transformer conditioned on pre-computed text
tokens. The generated video tokens are subsequently de-tokenized to create the
actual video. To address data issues, we demonstrate how joint training on a large
corpus of image-text pairs as well as a smaller number of video-text examples can
result in generalization beyond what is available in the video datasets. Compared
to the previous video generation methods, Phenaki can generate arbitrary long
videos conditioned on a sequence of prompts (i.e. time variable text or a story) in
open domain. To the best of our knowledge, this is the first time a paper studies
generating videos from time variable prompts. In addition, compared to the per-
frame baselines, the proposed video encoder-decoder computes fewer tokens per
video but results in better spatio-temporal consistency.

1 INTRODUCTION

It is now possible to generate realistic high resolution images given a description [34, 35, 32, 38,
59], but generating high quality videos from text remains challenging. In essence, videos are just
a sequence of images, but this does not mean that generating a long coherent video is easy. In
practice, it is a significantly harder task because there is much less high quality data available and
the computational requirements are much more severe [9]. For image generation, there are datasets
with billions of image-text pairs (such as LAION-5B [41] and JFT4B [60]) while the text-video
datasets are substantially smaller e.g. WebVid [4] with ∼10M videos, which is not enough given
the higher complexity of open domain videos. As for computation, training current state-of-the-
art image generation models is already pushing the state-of-the-art computational capabilities [59],
leaving little to no room for generating videos, particularly videos of variable length.

To make the matters worse, one can argue that a single short text prompt is not sufficient to provide
a complete description of a video (except for short clips), and instead, a generated video must be
conditioned on a sequence of prompts, or a story, which narrates what happens over time. Ideally,

‡Equal contribution. * Intern at Google Brain while working on this project.

1

Figure 1. Time variable text (i.e. story) conditional video generation. The entire figure is one
continuous video generated auto-regressively. We start by generating the video conditioned on the
first prompt and then after a couple of frames we change the prompt to the next one. Each row
contains a selected number of frames (from left to right in order) while the model was conditioned
on that particular prompt. The model manages to preserve the temporal coherence of the video
while adapting to the new prompt, usually taking the shortest path for the adaption (notice the
morphing of the teddy bear to the panda). Please note that the generated video has complex visual
features such as reflections, occlusions, interactions and scene transitions. Full video is available at
phenaki.github.io.

a video generation model must be able to generate videos of arbitrary length, all the while having
the capability of conditioning the generated frames at time t on prompts at time t that can vary over
time. Such capability can clearly distinguish the video from a “moving image” and open up the way
to real-world creative applications in art, design and content creation. To the best our knowledge,
story based conditional video generation has never been explored before and this is the first paper to
take early steps towards that goal. A traditional deep learning approach of simply learning this task
from data is not possible, since there is no story-based dataset to learn from. Instead, to achieve this
we rely on a model that is designed specifically with this capability in mind.

In this paper, we introduce Phenaki, a text to video model trained on both text to video and text to
image data that can:

– Generate temporally coherent and diverse videos conditioned on open domain prompts even
when the prompt is a new composition of concepts (Fig. 3). The videos can be long (minutes)
even though the model is trained on 1.4 seconds videos (at 8 fps).

– Generate videos conditioned on a story (i.e. a sequence of prompts), e.g. Fig. 1 and Fig. 5.

2

https://phenaki.github.io/

Figure 2. The architecture of Phenaki.Left: C-ViViT encoder architecture. The embeddings of
images and video patches from raw framesx are processed by a spatial and then a causal transformer
(auto-regressive in time) to generate video tokensz. Center: MaskGiT is trained to reconstruct
masked tokensz predicted by a frozen C-ViViT encoder and conditioned on T5X tokens of a given
promptp0. Right: How Phenaki can generate arbitrary long videos by freezing thepasttoken and
generating the future tokens. The prompt can change over time to enable time-variable prompt (i.e.
story) conditional generation. The subscripts represent time (i.e. frame number).

To enable these capabilities, we could not rely on current video encoders, because they either can
only decode �xed size videos or they encode frames independently. Hence, we introduce C-ViViT ,
a novel encoder-decoder architecture that:

– Exploits temporal redundancy in videos to improve reconstruction quality over a per frame model
while compressing the number of video tokens by 40% or more.

– Allows encoding and decoding of variable length videos given its causal structure.

2 THE PHENAKI MODEL

Inspired by the previous work in auto-regressive text to image [34, 59, 38] and text to video [54,
53, 18], Phenaki is designed with two main components (see Figure 2): an encoder-decoder model
which compresses videos to discrete embeddings (i.e. tokens) and a transformer model totranslate
text embeddings to video tokens. To get the text embeddings, Phenaki uses a pre-trained language
model, T5X [37]. We will discuss each one of these components in the following subsections.

2.1 ENCODER-DECODER VIDEO MODEL: C-VIV IT

One of the primary challenges for generating video from text, is to get a compressed representation
of videos. Previous work on text to video either use per-frame image encoders [18, 54, 57] such
as VQ-GAN [12] or �xed length video encoders [52] such as VideoVQVAE [49]. The former
allows for generating videos of arbitrary length, however in practice, the videos have to be short
because the encoder does not compress the videos in time and the tokens are highly redundant in
consecutive frames. The latter is more ef�cient in the number of tokens but it does not allow to
generate variable length videos. In Phenaki, our goal is to generate videos of variable length while
keeping the number of video tokens to a minimum so they can be modeled with a transformer
within current computational limitations. To do so, we introduce C-ViViT , a causal variation of
ViViT [1] with additional architectural changes for video generation, which can compress the videos
in temporal and spatial dimensions, while staying auto-regressive in time, This capability allows for
generating videos of arbitrary length auto-regressively.

3

Encoder architecture: As illustrated in Figure 2, we start with a video sequence oftx + 1 frames
with a resolution ofwx � hx andcx channels:x 2 R(t x +1) � h x � wx � cx . This sequence will be
compressed into a token representation of size(tz + 1) � wz � hz where the �rstwz � hz tokens
represent the �rst frame independently from the rest of the video, and the remaining tokens represent
spatio-temporal video tokens that auto-regressively depend on previous frames. To do so, we extract
non-overlapping image patches of sizewp � hp � cp from the �rst frame and video patches of size
tp � wp � hp � cp from the rest of the video. We typically use all channels at once such that the
number of patches equals the number of video tokenstz = t x

t p
, wz = wx

wp
andhz = h x

hp
. Each of

these patches is �attened and linearly projected into adz dimensional space. We combine the spatial
dimensions to have a tensor of shape(tz +1) � wz � hz � dz where the spatial and temporal dimensions
are separated. Then multiple transformer layers are applied along the spatial dimensions with all-
to-all attention. This is followed by multiple transformer layers over the temporal dimension with
causal attention such that each spatial token only observes spatial tokens from previous frames in
an auto-regressive manner. The effect of this is that the �rst frame can be completely independently
encoded. This opens up the possibility of text to image training to be embedded naturally into
our video model. The second advantage is that we can condition the video generation process on
a number of starting frames. The resulting patch embeddingsz of shapetz � wz � hz � dz are
then tokenized into learned codewordscz by vector quantization. The codebook learning will be
discussed later together with the losses.

Decoder architecture: The C-ViViT decoder is simply an upside down version of the encoder.
First tokens are transformed into embeddings. This is followed by the temporal transformer, then the
spatial transformer. After the output of the spatial transformer, we apply a single linear projection
without activation to map the tokens back to pixel space.

Quantization and Losses: To learn a discrete latent space, we quantize our encoder outputs into
the entries of a learned codebook via the vector quantization (VQ) objective in VQVAEs [45],

L VQ = ksg(z) � ek2
2 + � kz � sg(e)k2

2; (1)

where sg(x) � x, and d
dx sg(x) � 0 is the stop-gradient operator,� is the commitment loss weight,

ande is a codebook vector from codebookE. The index to the codebook vector closest toz is
found byi = argminj kz � E j k2

2. In addition to the VQ objective, we adopt the factorized and`2-
normalized codes from ViT-VQGAN [58] to improve codebook usage and reconstruction quality.

To train our model, we use a combination ofL 2 loss, image perceptual lossL IP [20, 61], video
perceptual lossL VP by using the I3D network [6] as feature extractor, and adversarial lossL Adv with
StyleGAN architecture [21]. As training objective, we use the following

L = L VQ + 0 :1 � L Adv + 0 :1 � L IP + 1 :0 � L VP + 1 :0 � L 2: (2)

Novelty over the ViViT architecture: While our proposed C-ViViT architecture is inspired by
the factorized encoder in ViViT [1], we modify their architecture to enable self-supervised learn-
ing from unlabeled videos. We �rst remove the[CLS] tokens in the spatial and the temporal
transformers. Next, we apply temporal transformer for all spatial tokens computed by the spatial en-
coder, in contrast to single run of the temporal transformer over the[CLS] tokens in ViViT. Most
importantly, the ViViT encoder requires a �xed length video input due to the all-to-all attention in
time. Therefore, we apply causal attention instead such that our C-ViViT encoder becomes auto-
regressive and allows for a variable number of input frames which are necessary to learn from image
datasets, and auto-regressively extrapolate video or single frames into the future.

2.2 TEXT-TO-VIDEO GENERATION WITH BIDIRECTIONAL TRANSFORMERS

In this stage, the text-to-video task can be formulated as a sequence-to-sequence problem to predict
video tokens given the paired text embeddings. Most of recent methods [34, 59, 54, 18] adopt a
transformer model for these sequence-to-sequence tasks. In their models, they use an auto-regressive
transformer which predicts the image or video tokens sequentially given the encoded text features.
As a result, the sampling time scales linearly with the sequence length, even when caching is used.
This becomes impractical for long video sequence generation.

4

Masked bidirectional transformer: In this work, we aim to reduce the sampling time by having
a small and �xed sampling step disregarding different video sequence lengths. Inspired by previous
work for image generation [8], we use a bidirectional transformer since it can predict different video
tokens simultaneously. For training stepi , we �rst sample a mask ratio
 i from 0 to 1 and randomly
replaced
 i �N etokens with the special token[MASK] , whereN is the video sequence length. Then
we learn the model parameters by minimizing the cross entropy loss on those masked tokens given
the encoded text embeddings and unmasked video tokens. During inference, we �rst label all of the
video tokens as the special token[MASK] . Then, at each inference step, we predict all the masked
(unknown) video tokens in parallel conditioned on the text embeddings and unmasked (predicted)
video tokens. We keep a ratio� i of the predicted tokens at sampling stepi and the remaining tokens
are re-masked and re-predicted in the next step.

As discussed in MaskGIT [8], the masking schedule
 i and sampling schedule� i have a signi�-
cant effect on the samples quality therefore we follow the same strategies. Compared to an auto-
regressive transformer, the number of sampling steps is an order-of-magnitude smaller (typically we
use values in the range of 12 to 48). Generally speaking, more sampling steps improves the quality.

Losses and training strategies: Given a pre-trained C-ViViT , videos are encoded into codebook
ids a of shape(tz + 1) � wz � hz which are �attened into a long vector using the raster ordering
from [58]. We then model the text-conditional video token distribution usingMasked Visual Token
Modeling(MVTM) [8]:

L mask = �
X

8i 2 [1;N];m i =1
logp(ai ja �M ; p); (3)

wherea �M represents the masked version ofa, mi is a binary variable indicating whetherai is
masked or not,N is the number of video tokens, andp is the text condition embedding. In addition
to the MVTM objective, we train using classi�er-free guidance by dropping the text condition10%
of the time during training [16, 59] . Finally, we dynamically adjust the MVTM objective during
training to allow the use of image and video datasets as a single large dataset. We achieve this by
only applying the masking ratio and objective on the �rstwz � hz tokens if only a single frame is
given or over all video tokens if a full video is given. This mixed image and video dataset training
strategy allows our models to learn concepts only present in image datasets, and transfer them to
concepts present video datasets (e.g., the pencil drawing styled video of the panda in Figure.3).

Inference and auto-regressive generation of long videos:At inference time, we sample videos
tokens by the same iterative process used in [8] with classi�er-free guidance scale� to control
alignment between the generation and the text condition. Once the �rst video is generated, we can
extrapolate additional frames auto-regressively by encoding the lastK generated frames in the last
video using C-ViViT , initializing MaskGIT with the tokens computed by our C-ViViT encoder,
and proceed to generate the remaining video tokens conditioned on a text input. During video
extrapolation, the text condition can be the same or a different one which enables our model to
dynamically create visual transitions between the previous and current text condition visual content,
effective generating a visual story an described by the input text.

3 EXPERIMENTS

To evaluate Phenaki, we test it on the following tasks: 1) text conditional video generation, 2) text-
image conditional video generation, 3) time variable text conditional video generation (i.e.) story
mode, 4) video quantization and 5) image conditional video generation a.k.a. video prediction.
To the best of our knowledge, 3) time variable text conditional video generation has not been ex-
plored in prior work. Given the dynamic nature of videos, we highly encourage readers to visit
phenaki.github.io to check the generated videos. The website also includes qualitative comparisons
to a subset of the prompts from the CogVideo paper [18]. While the focus is on the text to video
generation tasks, it is remarkable that Phenaki is still competitive on the more traditional video tasks
despite not being developed explicitly for these tasks. We implemented Phenaki in JAX [?] using
FLAX [?] library.

5

Table 1. Text to video compar-
isons on Kinetics-400 [22].

Method
FID

Image#
FID

Video#

T2V [25] 82.13 14.65
SC [5] 33.51 7.34
TFGAN [5] 31.76 7.19
NUWA 28.46 7.05
Phenaki [0-Shot] 37.74 3.84

Table 2. Text to video and text to image results highlighting the
importance of image datasets in video models. Text-to-image eval-
uation is done on� 40K images of LAION-400M [41].

Data Split Text to Video Text to Image
Vid% / Img% CLIP " FID # FVD # CLIP " FID #
100% / 0% 0.298 19.2 168.9 0.240 53.9
80% / 20% 0.303 21.4 198.4 0.289 29.4
50% / 50% 0.302 21.4 239.7 0.287 30.5

3.1 TEXT CONDITIONAL VIDEO GENERATION

Currently there is no established benchmark for evaluating text to video methods. This makes com-
paring Phenaki to recent methods such as NUWA [54], CogVideo [18], NUWA-In�nity [53] and
video diffusion models [17] dif�cult.

Unless speci�ed otherwise, we train a 1.8B parameter Phenaki model on a corpus of� 15M text-
video pairs at 8 FPS mixed with� 50M text-images plus� 400M pairs of LAION-400M [41] (more
details in Appendix B.3). The model used in the visualisations in this paper was trained for 1 million
steps at a batch size of 512, which took less than 5 days. In this setup 80% of the training data came
from the video dataset and each image dataset contributed 10%.

Qualitative evaluation: Samples from this model can be seen in Figure 3 and additional samples
are provided at phenaki.github.io. We observe that there is a high degree of control over both the
actors and the background dynamics in the videos. The appearance of the actors and the video style
can be adjusted by the text prompt as well (e.g. a regular video, a cartoon or a pencil drawing).

On phenaki.github.io we provide examples from prompts that were provided in the CogVideo [18]
demo. Since there are substantial differences between these methods it is hard to compare them on
an equal footing. As an example, there are massive differences in scale: 9B parameters for CogVideo
and 1.8B for our model. Additionally, the training data is different. Finally, we do not know how
representative the prompts in the CogVideo demo are for the general performance of the CogVideo.

Quantative comparison: The NUWA [54] paper provided a qualitative evaluation on Kinetics-
400. Since the NUWA model is only0:9B parameters we also use a model of the same size. Our
model was trained on 50% video and 50% image data in this experiment. The NUWA model �ne-
tuned on Kinetics but the Phenaki model is not: it is evaluated in azero shot setting. The results in
Table 1 show that Phenaki achieves comparable generation quality, in a zero-shot setting, compared
to previous text to video methods that were actually trained or �netuned on this dataset.

On the importance of joint text-to-image and text-to-video training While there are some text-
video datasets, text-image datasets dominate the internet in terms of quality and quantity [30]. Con-
sequently, there is simply not enough video data available to cover all the concepts present in text-
image datasets. For example using only our video data, concepts such as pencil drawings or different
painting styles cannot be learned. To be able to learn a model that can combine video dynamics with
these additional concepts we have to combine training on image and video data. In Table 2, we
evaluate the performance of using different ratios of video and images. We start with data splits of
only video, and vary the ratio of image and video datasets up to using50%image and50%video
datasets. In our results, we �nd that there is a trade-off in performance between models trained
with only video video (i.e., signi�cantly better FVD), and models trained with more image data
(i.e., better text-video and text-image alignment, and signi�cantly better FID in image datasets). On
phenaki.github.io we show samples from different models side by side where this trade-off between
control over the content and the quality of the dynamics can be seen. We believe that the trade-
off between concepts and dynamics will be improved as the quality and size of text-video datasets
increases in the future.

6

	Introduction
	The Phenaki model
	Encoder-decoder video model: C-ViViT
	Text-to-video generation with bidirectional transformers

	Experiments
	Text conditional video generation
	Text-Image conditional video generation
	Visual story telling by dynamic text inputs
	Video Encoding
	Image conditional video generation a.k.a Video prediction

	Related Works
	Conclusion
	Hyper-Parameters
	Details of Experiments
	Video Quantization
	Network architecture
	Training

	Image conditional video generation
	BAIR Robot Push C-ViViT architecture
	Kinetics-600 C-ViViT architecture
	MaskGIT architecture
	Training and Inference

	Text conditional video generation
	Architecture
	Training and inference
	Inference parameters against NUWA
	Inference parameters for ablation of image and video data for training.
	Inference parameters for all videos in the paper.

